On Extended Derivation Relations for Multiple Zeta Values

نویسنده

  • TATSUSHI TANAKA
چکیده

Recently, Masanobu Kaneko introduced a conjecture on an extension of the derivation relations for multiple zeta values. The aim of this paper is to give a proof of the conjecture by reducing it to a class of relations for multiple zeta values studied by Kawashima. Also we will give some algebraic aspects of the extended derivation operator ∂ (c) n on Q〈x, y〉, which was defined by modeling a Hopf algebra developed by Connes and Moscovici.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Shuffle Relations of Euler Sums

Abstract. In this paper we shall develop a theory of (extended) double shuffle relations of Euler sums which generalizes that of multiple zeta values (see Ihara, Kaneko and Zagier, Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142 (2)(2006), 307–338). After setting up the general framework we provide some numerical evidence for our two main conjectures. At the ...

متن کامل

On the Quasi-derivation Relation for Multiple Zeta Values

Recently, Masanobu Kaneko introduced a conjecture on an extension of the derivation relation for multiple zeta values. The goal of the present paper is to present a proof of this conjecture by reducing it to a class of relations for multiple zeta values studied by Kawashima. In addition, some algebraic aspects of the quasi-derivation operator ∂ (c) n on Q〈x, y〉, which was defined by modeling a ...

متن کامل

6 F eb 2 00 4 MULTIPLE q - ZETA VALUES

We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...

متن کامل

Multiple q-zeta values

We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...

متن کامل

On an extension of the derivation relation for multiple zeta values

In this paper, we propose a conjectural generalization of the derivation relation for multiple zeta values. This extension was inspired by works of Alain Connes and Henri Moscovici on a certain Hopf algebra of transverse geometry [1], [2], and is thought of as a first attempt to materialize the suggestion given at the end of Section 7 in [4]. The multiple zeta value (MZV) is a real number defin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008